
A HIGH-PERFORMANCE HARDWARE-BASED HIGH-
ASSURANCE TRUSTED WINDOWING SYSTEM

Jeremy Epstein
Cordant, Inc.

11400 Commerce Park Drive
Reston VA  22091

jepstein@cordant.com

Abstract1

TRW's Trusted X Window System prototype
established that it is possible to build a high
assurance windowing system, given a trusted
operating system as a base.  This paper describes an
extension of that architecture that uses custom
designed hardware to provide a high-performance,
low-cost windowing system while retaining  the high-
assurance character of the original design.

1.    Introduction

The TRW Trusted X Window System (henceforth
TX) prototype showed that high assurance multi-level
secure windowing is not an oxymoron.  [TXArch93]
describes the TX architecture.  However, TX has a
fundamental performance limitation:  all screen
drawing is performed by updating a "virtual frame
buffer", which is then merged by the software TCB
into the physical screen.  As a result, screen updates
are slow.  In addition, software is unable to take
advantage of any graphics hardware, because
hardware access is limited to the TCB.

In this paper we describe the design for a hardware
board, which coupled with the TX design can yield a
high-performance, high-assurance, low-cost
workstation.

Section 2 gives a brief introduction to the TX
architecture.  Section 3 describes the design for the
hardware, and contrasts it with both the software-
based solution in TX, and with other hardware-based
solutions.  Section 4 describes some particular
considerations in building the proposed board for IBM
PC hardware.  Section 5 compares this architecture to
related work, while section 6 summarizes our results.
Section 7 is a summary of acronyms used in the paper.

                                                       
1Copyright  1996 Cordant, Inc.  All Rights
Reserved.

2.    TX Architecture

The TX architecture, as described in [TXArch93],
relies on an underlying high-assurance (e.g., TCSEC
B3 or A1 [TCSEC85]) operating system that supports
both single-level and multi-level subjects over a range
of Mandatory Access Control levels with high-
bandwidth inter-subject communication.  TX uses the
time-tested concept of replication (or
polyinstantiation) of subjects to allow untrusted
software to provide most of the system's functionality.
Figure 1 shows a simplified version of the TX
architecture.2  Items shown above and to the left of the
double line are non-TCB, while items shown below
and to the right of the double line are TCB elements.

Keyboard and mouse input is received by TX/IM,
and passed to the X single level server3 (TX/SLS)
corresponding to the currently selected MAC label.
That is, if the currently selected label is Secret/B/, then
all input would be passed to the X server on the left in
Figure 1, and the X server on the right would be
unable to detect the presence of any input.  The only
processing performed by TX/IM is to search for the
Secure Attention Key (SAK) sequence, which is used
to invoke the trusted path facility.

An unmodified X client makes requests to the
TX/SLS running at its same MAC label, which in turn
draws into a single level virtual frame buffer (VFB).
Each VFB represents what a single TX/SLS views as
the contents of the screen.  When a TX/SLS updates
its VFB, it notifies TX/DM, which merges the VFBs
for all TX/SLSs and updates the physical frame buffer
                                                       
2The following items are omitted: TX/PE and TX/SEs
(used for cut and paste support); TX/CIT, TX/SIT, and
TX/M (used for initialization).
3In X, the term server refers to the software that
manages the graphics hardware, while a client is an
application that uses graphics hardware.  Thus, an X
server is always local to a user, while a client may be
local or remote.  While consistent, this nomenclature
frequently confuses new users of X, who are used to
clients being local and servers being remote!



(PFB), which is used by the graphics hardware to
update the screen.  Access to the PFB is limited to
TX/DM, along with access to all other graphics
hardware (because the graphics hardware is not trusted
to provide separation of requests from multiple MAC
labels).

When an application action causes mapping or
unmapping of a window4 on the screen (typically
associated with starting a new application), the
corresponding TX/SLS sends a message to TX/DM,
which in turn recalculates the screen layout based on
the new set of windows on the screen.  When mapping
windows, TX/DM also draws visible labels
representing the MAC label on all four sides of the
window.

Each TX/SLS has a matching TX/WM that
performs (untrusted) window management of windows
at that MAC label.

                                                       
4Strictly speaking, this process only occurs with top
level windows, as windows are defined in a
hierarchical fashion in X (i.e., each push-button is a
window within a pane of push-buttons, which is a
window within a dialog box, which is a window within
a top-level window).

Users can manipulate only those windows at the
current selected MAC label.  That is, to move, resize,
or provide keyboard or mouse input to a window, the
current MAC label must equal the window's MAC
label.  This is enforced by TX/IM, which sends all
input to the TX/SLS corresponding to the currently

selected label.
TX/MS performs an analogous function to the

TX/SLS for the trusted shell application (TX/TSH).
That is, it allows TX/TSH to draw on the screen using
a small set of graphics primitives.  TX/MS draws in a
VFB, just as the TX/SLSs do.  TX/DM merges the
VFB belonging to TX/MS with the TX/SLS's VFBs,
although TX/MS always takes precedence.  Functions
provided through TX/TSH include changing the
current MAC label and starting instances of TX/SLS
at new MAC labels.  TX/MS and TX/TSH are
inactive, except when invoked by the user through the
SAK (as described above under TX/IM).

Figure 2 shows a sample window display, with
shading to indicate which portion of the TX system
provides the information on the screen.  The
background portion of the screen contains a fill pattern
that is selected by the lowest TX/SLS (i.e., the least
highly classified) associated with the login session.

X Application
Window
Manager
(TX/WM){Untrusted

X clients

Secret/B/

X Server (TX/SLS)

X Application
Window
Manager
(TX/WM)

Top Secret/A/

X Server (TX/SLS)

X ApplicationX Application

Input
Manager
(TX/IM)

Display
Manager
(TX/DM)

Trusted
Shell

(TX/TSH)

Mini
Server

(TX/MS)

Keyboard & mouse Video display

TCB Boundary

Figure 1.  TX Architecture.



Note that there is a complete set of processing
software (i.e., TX/SLS, TX/WM, and applications)
with a corresponding VFB for each unique MAC label
in use.  Thus, if a user is concurrently working with
data at four different classification levels, there would
be four X servers, four window managers, and four
sets of applications running.  Each unique
combination of non-hierarchical categories is
considered a different MAC label for purposes of TX
software replication.

3.    Hardware Design

There are several performance problems with the
TX architecture relating to output processing due to
the extra level of processing involved with each
change to the display.  While input processing
theoretically has the same performance problem (due
to TX/IM having to examine each keystroke for the
SAK), human input rates are low enough that the

additional overhead is not noticeable5.  The remainder
of this section describes the processing problems,
provides a brief introduction to graphics hardware,
and proposes a solution based on hardware
polyinstantiation.

3.1.        The Problem

Consider how a character typed by a user is echoed
to the screen in an ordinary X system as compared to
TX.6  In ordinary X, the X server receives the

character and routes it to the appropriate X client.
That client responds by instructing the X server to
draw the character in the window.  The X server
verifies that the portion of the window being drawn is
not obscured by another window (or off the screen, or
                                                       
5While the input processing speed was not noticable,
the resources required to echo characters to the screen
was quite noticable in the prototype implementation.
6Character processing in X is full-duplex: the X server
does not provide echo, but rather relies on the X client
to perform the echo.  This is necessary because only
the X client knows where to draw the character, what
font to use, etc.

TX/TSH

TX/DM

TX/SLS:
Secret/B/

TX/SLS:
Top Secret/A/

Figure 2.  Sample TX Screen.



otherwise unavailable), and renders the character into
the PFB, possibly using a hardware assist (i.e.,
hardware capable of rendering characters from a font
stored memory).  By contrast in TX, TX/IM receives
the character, routes it to the X server (i.e., TX/SLS)
at the currently select MAC label, which routes the
character to the appropriate X client.  Again, the client
responds to the X server (i.e., TX/SLS), which
performs the same processing, but draws the character
into its VFB without any hardware assist.  TX/DM
then verifies that the portion of the VFB being updated
is not obscured by a window at a different MAC label
(a given TX/SLS is unable to determine this, since it
only knows about windows at its own MAC label), and
if no such limitation exists, copies the character from
the VFB of the TX/SLS to the PFB, thus causing its
display on the screen.

In a more extreme case, consider where an action
would cause an X client to perform a three-
dimensional rotation of an image in a screen, or where
video is being shown in a window.  In ordinary X, the
client can request that the X server perform a 3D
rotation (providing that the server provides that
facility), which can be done in hardware.  Similarly, a
client can request that the server show a video in a
window (again, providing that the server provides the
facility), which may be possible in hardware.  In TX,
these features cannot use hardware, because the
TX/SLS has no direct hardware access.  Hence, for
such real-time and high-performance graphics, TX is
too slow to be usable.

Thus, we note that a system using TX as its multi-
level secure windowing system will be unable to take
advantage of high performance graphics hardware,
and will hence be limited in its graphics performance.
In addition, the context switching and message
passing time in the underlying operating system
becomes critical to the performance of the user
interface.

3.2.        A Brief Introduction to Graphics
Hardware

To understand the proposed solution, it is
necessary to have a high-level view of how graphics
hardware works.  As previously noted, ordinary X
servers draw into a PFB.  A PFB is a one-dimensional
array, where each element of the array represents a
single pixel on the screen.  Each element of the PFB is
one or more bits, depending on the type of video being
drawn and the cost.  For example, a black and white
monitor would be driven by a PFB with one bit per
pixel (where the definition of whether 0 represents
black or white is dependent on the hardware designer).
For color or grayscale graphics controllers, common

values are four bits per pixel (16 simultaneous color or
grayscale values possible), eight bits per pixel (256
simultaneous color or grayscale values possible), and
24 bits per pixel (16M simultaneous color or grayscale
values possible).

It is thus possible to calculate the memory
requirements for a PFB by multiplying the resolution
to be provided (e.g., 1024 x 768) by the number of bits
per pixel.  Graphics controllers for current model IBM
PCs typically have 1MB, which allows for 1024 x 768
with eight bits per pixel.

For four or eight bit controllers, the pixel value is
not usually a color definition per se, but rather an
index into a colormap which selects the red, green,
and blue values associated with pixels having that
value.  Thus, it is possible to recolor all pixels of a
single value without modifying the pixels, but rather
by modifying the colormap entry.  Depending on the
graphics hardware, the colormap may be managed
directly by the X server or by the operating system.  If
the operating system manages the colormap, then the
X server uses system calls to request changes to the
map.  For 24 bit controllers, the pixel value typically
contains eight bit red, green, and blue values, and
hence no colormap is needed.

For maximum performance, X servers map the
PFB into their address space and manipulate the PFB
directly using ordinary memory load and store
instructions.  That is, the PFB is not managed by the
operating system's kernel, as the overhead in making
operating system requests to modify each pixel would
render the hardware unusable.  Low-end graphics
hardware converts the values in the PFB together with
the colormap into electrical signals to the monitor.  In
this case, the X server translates high-level requests
(e.g., draw a three-pixel wide line from pixel (X1,Y1)
to (X2, Y2)) into modifications to pixels within the
PFB.  More sophisticated graphics hardware may
include facilities to offload such drawing, so the host
processor can spend more cycles running the
application itself.  High-end graphics hardware can
include a buffer of related commands, and can then
perform tasks such as rotation without any
involvement by the X server.

In X, clients do not directly manipulate either the
PFB or the colormap, but rather rely on the X server to
perform those tasks.

3.3.        Proposed Solution

Our goal is to reduce the performance bottleneck
caused by TX/DM having to mediate all access to the
PFB.  To do so, we propose a hardware solution with



multiple Virtual Graphics Subsystems (VGS),7 each
with its own VFB.  Each TX/SLS would then have
direct access to a VGS, and hence would not need to
request that TX/DM perform screen updates.  A
Frame Selection Vector (FSV) determines, for each
pixel on the screen, which of the VFBs "owns" that
pixel.  The Frame Merge Unit (FMU) constantly scans
the FSV, selecting the pixel from the corresponding
VFB and copying it to the PFB.  Existing hardware
can then translate the PFB into signals to the monitor,
just as this operation occurs in current graphics
controllers.  Thus, if an SLS updates its VFB, the
contents of the frame buffer would be updated at the
next scan of that pixel (which typically happens 60 or
70 times per second).

Figure 3 shows that for pixel 1400, the FMU
selects the value 44, because the FSV entry for pixel
1400 is 3, indicating the Secret/B/ VFB, while for
pixel 1402 the FMU selects the value 3A, because the
FSV entry for that pixel is 4.  The value XX is shown
for pixel 1403 to indicate that the value of VFB #5 is
not shown in the figure.

In this architecture, VGSs and their corresponding
VFBs are dynamically allocated when users request
creation of new X servers using the TX/TSH.  To
avoid improper object reuse, there must be a

                                                       
7Each graphics subsystem would typically consist of a
single graphics chip.  More sophisticated graphics
subsystems might use several chips, but that has no
impact on our architecture.

mechanism in the hardware to cause resetting a
particular VGS and clearing the associated VFB.  The
zeroeth VGS is reserved for use by TX/DM and
TX/MS for displaying TCB data, such as the trusted
path menus and visual window labels.

Figure 4 shows the mapping of VGSs, VFBs, the
FSV, and FMU.  TX/DM still plays an important role
in display: it is responsible for (a) drawing labels in
windows by rendering the labels into VFB #0 and (b)
updating the FSV whenever a window is mapped or
unmapped to assign the necessary pixels to the
corresponding VGS and VFB.  However, these are
both events that occur relatively infrequently compared
to screen updates.  Hence, the performance-critical
portion of TX/DM is moved into hardware.

Note that the size of an entry in the FSV need not
be the same as the size of a pixel.  The FSV entries
would typically be four bits, thus allowing up to 15
VGSs plus the reserved VGS for use with TCB data.
A VFB entry would typically be eight or 24 bits, as
noted above.  Note that all VFBs (and the PFB) must
be identical in size for this scheme to work, as the
FMU does not map different size VFB entries into the
PFB.

46
46
44

44

Secret/B/
Virtual Frame

Buffer (#3)

Top Secret/A/
Virtual Frame

Buffer (#4)

33
33

...

...

1400
1401
1402
1403
1404
1405

Pixel #

3A
82
82

3A

44
3A

...

...

Frame
Selection
Vector

3... 3 4 5 3 4 ...

Frame
Merge
Unit

1400

1400
1401
1402
1403
1404
1405

Pixel #

1401

1402

1403

1404

1405
Pixel #

Physical
Frame
Buffer3A

46
44

XX

44
33

...

...

1400
1401
1402
1403
1404
1405

Pixel #

Figure 3.  Merging VFBs into PFB using the FSV and FMU.



As previously noted, the pixel value in the VFBs
and PFB is (typically) an index into a colormap.  For
example, in Figure 3, the value 44 appears as a pixel
value in both VFB #3 (labeled Secret/B/) and VFB #4
(labeled Top Secret /A/).  In the TX prototype each
TX/SLS configures its colormap independently to
avoid the covert channels which might be present if
they shared a common colormap.  As a result,
whenever the user selects a new current MAC label,
the colormap from that TX/SLS is installed as the
current colormap.  The result of this design is that
windows change colors in a distracting fashion when
the user changes MAC labels.  An alternate solution
which could have been implemented in TX is to divide
up the colormap, allocating certain entries to each
TX/SLS in a static fashion.  However, this reduces the
maximum number of entries allocated to any
individual TX/SLS.

In the proposed hardware architecture, if the FMU
directly drives the screen, instead of generating a PFB,
then it could take the colormaps corresponding to each
VFB and directly generate the necessary signals to the

monitor.  Alternately, there could be a system
colormap for use by the FMU.  TX/DM would set the
system colormap from the VGS's colormap whenever a
MAC label is selected.  This latter approach is the
equivalent of the prototype TX implementation.

An important premise is that each TX/SLS is
capable of communicating with the VGS and VFB at
its MAC label, and that there is no mixing of
information.  The specifics of how this can be
implemented depend on both the operating system and
specific hardware architecture, and as such are
discussed in the following section.

4.    A PC Realization

The IBM-compatible personal computer has
become the de facto standard for workstation
hardware.  Unfortunately, it has several significant
flaws which make an implementation of the above
architecture difficult.  In this section we outline how
the hardware described in section 3 could be
implemented in a PC hardware environment.  The PC

VGS #0

VFB #0

Hardware

Software TX/MS

TX/TSH

VGS #1

VFB #1

TX/SLS

X client X client

FSV

FMU

TX/DM

VGS #n

VFB #n

TX/SLS

X client X client

...

...

...

PFB

Screen

Figure 4.  Mapping of VGSs, VFBs, FSV, and FMU.



is probably the most complicated environment to
design for; other hardware architectures would be
easier than that described here.

Intel x86 processors (including the 80486 and
Pentium) access I/O devices both by issuing IN and
OUT instructions and by accessing memory-mapped
devices.  For example, typical VGA8 controllers
decode I/O addresses 3C0h through 3CFh for use in a
wide variety of operations including setting up
colormaps, configuring screen resolution, etc.  The
PFB for a VGA controller is accessed through a 64K
sliding window mapped into main memory.9

In order to achieve reasonable performance and
minimize cost of the resulting board, it is necessary to
have hardware that operates within these limits (i.e., it
behaves as a conventional VGA controller).  Figure 5

                                                       
8VGA, or Video Graphics Array, and its superset
Super VGA (or SVGA) is the standard for modern PC
video controllers.  There are a wide variety of largely
incompatible SVGA controllers, each of which use a
separate command set.
9The 64K window size is a holdover from the early PC
architecture, where addresses above 640K were
reserved.  To move the sliding window, X servers
issue OUT commands to the I/O ports, causing the
VGA controller to adjust the video addresses mapped
into main memory.

shows a block diagram of a PC graphics card designed
to use off-the-shelf VGA chips and memory.  A Bus
Decode Unit (BDU) decodes a 16 bit I/O address,

examines the high order six bits, and routes it to the
appropriate VGS.  The BDU also decodes memory
addresses to allow access to the VFBs and the FSV.
The BDU relies on the host processor to prevent any
invalid access, such as by a TX/SLS to the FSV.

In this design, the VGSs are off-the-shelf SVGA
chips, and the VFBs are off-the-shelf memory chips.
The PFB is a standard video RAM, and the FSV is an
off-the-shelf memory chip.  Off-the-shelf components
can also be used to translate the PFB to video signals.
The only custom hardware is the FMU and the BDU.
From our experience in designing other PC hardware,
we believe that the FMU and BDU could be combined
into a single custom chip (most likely an ASIC, or
Application Specific Integrated Circuit).  The BDU is
moderately complex, as it needs to forward requests
from the bus to the appropriate VGS and send
responses back, mapping I/O addresses in the process.

Operating system support necessary for this card is
as follows:  Each TX/SLS would need to have I/O
access allowed to the I/O addresses of the
corresponding VGS,10 and its memory map would

                                                       
10It is undesirable to require that I/O access to the
VGS go through the operating system, as the

PC bus

VGA
connectorPFB

FSV

FMU

VFB #0

VGS #0

BDU

...

VFB #1

VGS #1

VFB #n

VGS #n

Figure 5.  A PC Card Implementing the Proposed Design.



need to include the corresponding VFB.  Fortunately,
the Intel 80x86 architecture includes a facility to allow
non-ring 0 processes (i.e., those processes not running
in the most privileged processor state) to access
selected I/O addresses.  Thus, the operating system
would simply configure the appropriate set of VGS
addresses for each TX/SLS, and the CPU hardware
performs the necessary protection.

Changes to the X server would be minimal to use
this hardware.  TX/DM would need a mechanism to
notify the TX/SLS of the I/O and memory addresses it
should use, rather than the default values hardwired
into the code.

4.1.        Areas for Future Work

Because we have not performed a detailed
hardware design, it is likely that there are flaws yet to
be discovered.  One item we do not yet have a solution
for is how to reliably clear the VGS so it can be
dynamically assigned to a new TX/SLS without fear of
object reuse.  A fallback position would be to either
statically assign the VGSs (i.e., VGS #1 is always Top
Secret/A/, even if a particular user is not using that
MAC label), or to require that the workstation be
power-cycled before reassigning VGSs to new labels.
Another alternative would be to rely on a hardware
feature of the VGSs to perform the clearing on
command from the BDU.  However, we are unsure
whether off-the-shelf VGA chips that would be used
for VGSs would have such a facility.

This design allows untrusted software to directly
access the bus (to access the VGS and VFB).  As a
result, it clearly has opportunities for hardware level
covert timing channels.  We do not have any solution
to this problem.

4.2.        Estimated Manufacturing Cost

It is not obvious how many VGSs and VFBs a user
would need, as different users will need to operate
with varying numbers of simultaneous MAC labels.  In
addition, if VGSs are statically assigned (as noted
above might be desirable to avoid covert channels),
then more VGSs might be required.

As a result of this uncertainty, we believe that the
board described above should be built with three
VGSs, three VFBs, and sockets to insert additional
VGSs and VFBs.  That is, the base model would allow

                                                                                     
aforementioned sliding window is manipulated by
performing direct I/O operations to the VGS.
Requiring each such operation to go through the
operating system would seriously damage
performance.

operation of two simultaneous labels, plus a VGS and
VFB for use by the TCB for labeling and trusted path.

The actual cost of a board depends on the size of
each VFB, the sophistication of the VGSs, and other
factors to be determined during detailed hardware
design.  We have presumed a low-end VGS and 1MB
VFBs.  We have also assumed that the screen has no
more than 1 million pixels, which requires a FSV of
512KB.

Given such assumptions, we believe that such a
board could be manufactured today in large quantities
(10,000 units) for about $300 each, as shown in Table
1.  Fluctuations in memory cost will obviously affect
the price significantly.  Adding additional VGS/VFB
pairs would cost about $65 each.  Thus, a full board
with 16 VGSs and VFBs could be manufactured for
$300+($65×13)=$1145.  Note that these figures do not
include any allowance for hardware engineering,
software development, or profit.  While this is
certainly not a low-cost board compared to a standard
VGA card, it is truly inexpensive compared to having
15 computers on a user's desk!

4.3.        Performance

The design proposed here is such that graphics
performance should be almost equal to that of X using
a VGA card with the same graphics chip as is used in
the VGS.  The FMU should not introduce any
noticeable overhead.  The BDU should not introduce
significant overhead either, except when multiple
instances of TX/SLS are contending for bus access to
access the BDU.  Using a fast bus (e.g., a PCI bus)
should minimize such contention.

Operating system overhead is a significant
concern, as context switching and message passing
times can cause software bottlenecks.  However, the
performance of this design should be significantly
better than that of the TX prototype which sends the
VFB from the TX/SLS to the TX/DM in a message,

Table 1.  Estimated board manufacturing cost.

Item Cost
Printed circuit board $35
BDU/FMU ASIC $20
Physical Frame Buffer (1MB video RAM) $40
Virtual Graphics Subsystem (qty 3) $75
Virtual Frame Buffer (1MB RAM, qty 3) $120
Sockets for 13 more VGSs and VFBs $5
Miscellaneous components $5
Total (with 3 VGS/VFB pairs) $300
Total (with 16 VGS/VFB pairs) $1145



which is a significant strain on operating system
message passing.

5.    Related Work

The closest work to that described here is a patent
granted to Loral [Loral91].  The notion of using
polyinstantiated hardware is common to the approach
presented there.  However, Loral did not have any
concept similar to the FSV or the FMU.  Hence, the
screen was divided into vertical bands, and windows of
a given label were confined to a single band.  By
dividing the screen up, the screen and the system are
much less usable than in the approach described here.

Compartmented Mode Workstations (CMWs)
[CMSREQS87] provide similar functionality to TX at
a lower cost.  Because of their lower assurance, the X
server is included in the TCB, and hence is able to
take advantage of existing graphics hardware.  Thus,
they have no need for special purpose hardware as is
proposed here.

The Secure Computing Corporation is conducting
research on a TCB that supports policies in which the
VGS memory regions have non tranquil security
attributes.  With such a TCB, applications in which
the required number of separate displays grows to
exceed the hardware limited number of VGSs can still
be supported with minimal impact on performance.
The TCB makes it possible to have displays that are in
a "hot backup" state which can be displayed very
quickly as needed.  The integrity of the separation
between the different X servers that use a single VGS
in sequential order is assured by the TCB's
enforcement of the security labels on the VGS's
memory region and the separation capabilities of the
system's security policy.  Control over the transition
between one of the hot backups and a currently active
X server is done by a very simple display controller
subject that makes use of existing TCB control
facilities to change the security label on a VGS.  The
operational view is similar to the existing multiple
display X Window managers.  Each display screen
would have windows associated with subjects at
different security levels, but different display screens
could have different groups of applications.  Cut and
paste between windows and across screens is
supported and controlled by the system security policy.

6.    Conclusions

We believe that the design presented here is
feasible for a low cost, yet high assurance windowing
system.  By leveraging the existing TX research

performed by TRW, a board could be manufactured for
as little as $300 that would allow a high assurance
operating system to incorporate high performance
windowing.

Such a board could be used for other purposes as
well, unrelated to high assurance computing, as
follows:

(1) If the screen can be reasonably partitioned,
the board could be used to provide parallel video
processing: multiple applications could simultaneously
use the graphics hardware for high performance
display.  Thus, the board could be considered as a
MIMD (Multiple Instruction Multiple Datastream)
parallel processing graphics engine.

(2) The board could be used to provide fast
switching between multiple desktops.  A user might
have a desktop for software development and a
separate desktop for documentation writing, each of
which runs different applications.  Switching among
the desktops does not require the applications to
redraw their windows, but only requires updating the
FSV.

(3) The board could be used as a development
platform for new windowing systems: a user could run
a windowing system for development using one VGS
(and associated VFB) and use a separate VGS and
VFB as a testbed without fear that a bug in the test
windowing system would crash the development
environment.

While (2) and (3) are feasible using the TRW TX
prototype (as described in [VWS92]), (1) is only
possible using the hardware solution proposed here.

7.    Acronyms

BDU Bus Decode Unit.  The hardware
logic for decoding bus operations
and passing them to the appropriate
VFB, FSV, or VGS, and for placing
replies from the VFB, FSV, or VGS
back on the bus.

FMU Frame Merge Unit.  The hardware
logic to merge the VFBs into the
PFB by selecting pixels based on
corresponding values in the FSV.

FSV Frame Selection Vector.  A memory
buffer used to select each pixel from
the appropriate VFB.

PFB Physical Frame Buffer.  The binary
image of the physical screen.

RAM Random Access Memory.
TX/DM Display Manager.  The portion of

TX responsible for managing the



display and rendering window
labels.

TX/IM Input Manager.  The portion of TX
responsible for managing keyboard
and mouse input.

TX/MS Mini Server.  The portion of TX
responsible for rendering the trusted
path display.

TX/SLS Single Level Server.  An untrusted X
server running at a single MAC
label.  For every TX/SLS, there is
exactly one VGS, one VFB, and one
TX/WM.

TX/TSH Trusted Shell.  The portion of TX
responsible for the trusted path user
interface.

TX/WM Window Manager.  An untrusted X
window manager running at a single
MAC label.  For every TX/WM,
there is exactly one VGS, one VFB,
and one TX/SLS.

VFB Virtual Frame Buffer.  The binary
image of the screen associated with a
TX/SLS or TX/MS.  For every VFB,
there is exactly one VGS, one
TX/SLS, and one TX/WM.

VGA/SVGA Video Graphics Array/Super Video
Graphics Array.  The standard for
IBM PC graphics hardware.

VGS Virtual Graphics Subsystem.  A
single-level graphics hardware
subsytem.  For every VGS, there is
exactly one VFB, one TX/SLS, and
one TX/WM.

8.    Acknowledgments

The author appreciates the encouragement of his
colleagues at Secure Computing Corporation for
encouraging him to write this paper.  Comments from
the anonymous referees were also very helpful in
improving the quality of the paper.  Finally, we
acknowledge the Trusted X project at TRW, which
plowed the ground in which this idea grew.  Key team
members on that project (in addition to the author)
were Hilarie Orman, John McHugh, Rita Pascale,
Marty Branstad, Ann Marmor-Squires, and Doug
Rothnie.

9.    References

[CMWREQS87] John P.L. Woodward, Security
Requirements for System High and

Compartmented Mode Workstations,
DIA Document number DDS-2600-
5502-87, November 1987.

[Loral91] Richard Sherman, George Dinolt,
and Frank Hubbard, Multilevel
Secure Workstation, U.S. Patent
5,075,884, December 24, 1991.

[TCSEC85] National Computer Security Center,
Trusted Computer Systems
Evaluation Criteria, DoD 5200.28-
STD, Fort Meade, MD, December
1985.

[TXArch93] A High Assurance Window System
Prototype, J. Epstein, et al, Journal
of Computer Security, Vol. 2, No
2&3, 1993.

[VWS92] Virtual Window Systems: A New
Approach to Supporting Concurrent
Heterogeneous Windowing Systems,
R. Pascale and J. Epstein,
Proceedings of the 1992 USENIX
Summer Conference, San Antonio
TX, July 1992.


